
Q1. What is Data Structure?
Ans: A data structure is an arrangement of data in a computer’s memory or
even disk storage. It has a different way of storing and organizing data in a
computer so that it can used efficiently. Different kind of Data structure is
used in different application. For example, B-tree is widely used in
implementation of databases.

Q2. Name different type of data structures?
Ans: There are basically two types of data structures

 Linear data Structure

 Non Linear data Structure

Q3. What is Linear Data Structure ?
Ans: Data structure where data elements are arranged sequentially or linearly
where the elements are attached to its previous and next adjacent in what is
called a linear data structure. In linear data structure, single level is involved.
Therefore, we can traverse all the elements in single run only. Linear data
structures are easy to implement because computer memory is arranged in a
linear way. Its examples are array, stack, queue, linked list, etc.

Q.4 What is Non-Linear Data Structure?
Ans: Non Linear Data Structures are constructed by attaching a data element
to several other data elements in such a way that it reflects a specific
relationship among them For Example: – N-dimensional Array, Trees and
Graphs

Arrays
Q.1 What is an Array?
Ans: An Array can be defined as a data structure having fixed size sequenced
collection of elements of same data type and which can be referenced through
same variable name. An Array is a name given to a group of similar quantities.
Declaring an array
Type variable_name [length of array];
For example:-
double height[10];
float width[20];
int min[9];
int myArray[5] = {1, 2, 3, 4, 5}; //declare and initialize the array in one
statement
In C language array starts at position 0. C language treats array name as the
pointer to the first element and an item in the array can be accessed through
its index.

Q.2 How to read and write data in an array?
Ans:
#include<stdio.h>
void main ()
{
 int array[10], n;

 // Reading an array
 printf(“Enter size of an array”);
 scanf ("%d", &n);
 printf(“Enter array elements”);
 for (i=0;i<n;i++)
 scanf ("%d", &array[i]);

 // writing an array
 printf(“array elements are”);
 for (i=0;i<n;i++)
 printf ("%d", array[i]);
}

Q.3 How to insert data in an array at a particular position?
Ans: To insert a value into an array, you need to shift every value after the
location you want to insert. The logic is very simple: start from the end and
copy the previous item to the current element until you hit the location you
want to insert.

Q.4 Write code to insert data in an array at a particular position.
Ans:
#include< stdio.h >
 void main ()
 {
 int array [10], n elem, pos;
 // Reading an array
 printf (“Enter size of an array”);
 scanf ("%d", &n);
 printf (“Enter array elements”);
 for (i=0;i<n;i++)
 scanf ("%d", &array[i]);

 //Inserting an element at specified position
 printf (“Enter element to be inserted”);
 scanf ("%d", &elem);
 printf(“Enter position where to insert the element”);
 scanf ("%d", &pos);
 pos--;
 for (i=pos;i--)
 a[i+1]=a[i];
 a[pos]=elem;
 n++;
 // writing an array
 printf (“array elements are”);
 for (i=0;i<n;i++)
 printf ("%d", array[i]);
 }

Q.5 How to delete an element from specified position from an array?
Ans: To delete a value from an array, you need to shift every value after the
location you want to delete. The logic is very simple: start from the position
you want to delete and copy the previous item to the current element until
end of the array.

Q.6 Write code to delete data from an array from a particular position?
Ans:
#include< stdio.h >
 void main ()
 {
 int array[10], n elem ,pos;
// Reading an array
 printf(“Enter size of an array”);
 scanf ("%d", &n);
 printf(“Enter array elements”);
 for (i=0;i<n;i++)
 scanf ("%d", &array[i]);
 //deleting an element at specified position
 printf(“Enter position from where to delete the element”);
 scanf ("%d", &pos);
 pos--;
 for (i=pos ; i<n ;i++)
 a[i]= a[i+1];
 n--;
// writing an array
 printf(“array elements are”);
 for (i=0;i<n;i++)
 printf ("%d", array[i]);
 }

Q.7 How to merge two sorted arrays?
Ans: Assume, that both arrays are sorted in ascending order and we want
resulting array to maintain the same order. Algorithm to merge two arrays
A[0..m-1] and B[0..n-1] into an array C[0..m+n-1] is as following:

 Introduce read-indices i , j to traverse arrays A and B, accordingly.
Introduce write-index k to store position of the first free cell in the
resulting array. By default i = j = k = 0.

 At each step: if both indices are in range (i < m and j < n), choose
minimum of (A[i], B[j]) and write it to C[k]. Otherwise go to step
4.

 Increase k and index of the array, algorithm located minimal value
at, by one. Repeat step 2.

 Copy the rest values from the array, which index is still in range, to
the resulting array.

Q.9 What is two-dimensional array?
Ans: Two-dimensional arrays, the most common multidimensional arrays, are
used to store information that we normally represent in table form. Two-
dimensional arrays, like one-dimensional arrays, are homogeneous. This
means that all of the data in a two-dimensional array is of the same type. The
two-dimensional array may also be visualized as a one-dimensional array of
arrays. Examples of applications involving two-dimensional arrays include:

 a seating plan for a room (organized by rows and columns),

 a monthly budget (organized by category and month), and

 a grade book where rows might correspond to individual students
and columns to student scores.

Declaration of Two-Dimensional Arrays int a[3][2];
We can declare and initialize an array A as follows:
//declaration
int A[3][4] = {{8, 2, 6, 5}, //row 0
{6, 3, 1 ,0}, //row 1
{8, 7, 9, 6}}; //row 2

Searching
Q .1 How to do Linear Search in an Array?
Ans: Linear search or Sequential is the simplest search algorithm for finding a
particular value in an array that consists of checking every one of its elements,
one at a time and in sequence, until the desired one is found.
Q .2 Write code to do Linear Search in an Array?
Ans:

Q.3 How to do Binary Search in an Array?
Ans: A Binary Search or Half-interval search algorithm finds the position of a
specified value (the input “key”) within a sorted array. In each step, the
algorithm compares the input key value with the key value of the middle
element of the array. If the keys match, then a matching element has been
found so its index, or position, is returned. Otherwise, if the sought key is less
than the middle element’s key, then the algorithm repeats its action on the
sub-array to the left of the middle element or, if the input key is greater, on
the sub-array to the right. If the remaining array to be searched is reduced to
zero, then the key cannot be found in the array and a special “Not found”
indication is returned.
Q.4 Write ‘C’ code to do Binary Search in an Array?
Ans:

Stack
Q1. What is Stack ?
Ans: Stack is a linear data structure which follows a particular order in which
the operations are performed. The order may be LIFO(Last In First Out) or
FILO(First In Last Out).
Q.2 Write a Program for Stack implementation through Array?
Ans:

Q.3 What is the main difference between ARRAY and STACK?
Ans: Stack follows LIFO. Thus the item that is first entered would be the last
removed. In array the items can be entered or removed in any order. Basically
each member access is done using index and no strict order is to be followed
here to remove a particular element .Array may be multi-dimensional or one
dimensional but stack should be one-dimensional. Size of array is fixed, while
stack can be grow or shrink. We can say stack is dynamic data structure.

Q.4 What are various Applications of Stack?
Ans: Some of the applications of stack are:

1. Evaluating arithmetic expression
2. Balancing the symbols
3. Towers of Hanoi
4. Function Calls
5. 8 Queen Problem.

Queue
Q1. What is Queue?
Ans: A Queue is a linear structure which follows a particular order in which the
operations are performed. The order is First In First Out (FIFO). A good
example of a queue is any queue of consumers for a resource where the
consumer that came first is served first. The difference between stacks and
queues is in removing. In a stack we remove the item the most recently added;
in a queue, we remove the item the least recently added.
Q.2 Write a code in ‘C’ for Linear Queue through Array?
Ans:

Q.3 What is a Circular Queue?
Ans. A circular queue is one in which the insertion of new element is done at
the very first location of the queue if the last location of the queue is full.
Suppose if we have a Queue of n elements then after adding the element at
the last index i.e. (n-1) th , as queue is starting with 0 index, the next element
will be inserted at the very first location of the queue which was not possible
in the simple linear queue. That’s why linear queue leads to wastage of the
memory, and this flaw of linear queue is overcome by circular queue. So, in all
we can say that the circular queue is a queue in which first element come right
after the last element that means a circular queue has a starting point but no
end point.

Q.5 What is Priority Queue?
Ans: A Priority Queue is a collection of elements such that each element has
been assigned a priority and such that the order in which each elements are
deleted and processed comes from the following rules:

1. An element of higher priority is processes before any element of
lower priority.

2. Two elements with the same priority are processed according to
the order in which they were added to the queue.

A priority queue must at least support the following operations:
1. insert_with_priority: add an element to the queue with an

associated priority
2. pull_highest_priority_element: remove the element from the

queue that has the highest priority , and return it.
Algorithm to add an item in priority queue
This algorithm adds an item with priority number M to a priority Queue
maintained by a 2-dimensional array Queue.

1. Insert Item as the rear element in row M of Queue.
2. Exit.

Algorithm to delete an item from a priority queue
This algorithm deleted and processes the first element in a priority queue
maintained by a 2-dimensional array Queue

1. [Find the first nonempty queue]
2. Find the smallest K such that FRONT[K]!=NULL.
3. Delete and process the front element in row K of Queue.
4. Exit.

Sorting
Q.1 What is Sorting?
Ans: Sorting refers to ordering data in an increasing or decreasing fashion
according to some linear relationship among the data items.

Q.2 Write a ‘C’ code for selection sort?
Ans:

Q.3 What is bubble sort?
Ans: Bubble sort , often incorrectly referred to as sinking sort , is a simple
sorting algorithm that works by repeatedly stepping through the list to be
sorted, comparing each pair of adjacent items and swapping them if they are
in the wrong order. The pass through the list is repeated until no swaps are
needed, which indicates that the list is sorted. The algorithm gets its name
from the way smaller elements “bubble” to the top of the list. Because it only
uses comparisons to operate on elements, it is a comparison sort.
For Example: Let us take the array of numbers “5 1 4 2 8”, and sort the array
from lowest number to greatest number using bubble sort algorithm. In each
step, elements written in bold are being compared. Three passes will be
required.
First Pass:
(5 1 4 2 8) → (1 5 4 2 8), Here, algorithm compares the first two elements,
and swaps them.
(1 5 4 2 8) → (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) → (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) → (1 4 2 5 8), Now, since these elements are already in order (8 >
5), algorithm does not swap them.
Second Pass:
(1 4 2 5 8) → (1 4 2 5 8)
(1 4 2 5 8) → (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) → (1 2 4 5 8)
(1 2 4 5 8) → (1 2 4 5 8) Now, the array is already sorted, but our algorithm
does not know if it is completed. The algorithm needs one whole pass without
any swap to know it is sorted.
Third Pass:
(1 2 4 5 8) → (1 2 4 5 8)
(1 2 4 5 8) → (1 2 4 5 8)
(1 2 4 5 8) → (1 2 4 5 8)
(1 2 4 5 8) → (1 2 4 5 8)

Q .4 Write a ‘C’ code for bubble sort?
Ans:

Q.5 Write a ‘C’ code for insertion sort?
Ans:

Q.6 What is Merge sort?
Ans: The divide-and-conquer strategy is used in quicksort. Below the recursion
step is described:

1. Choose a pivot value. We take the value of the middle element as
pivot value, but it can be any value, which is in range of sorted
values, even if it doesn’t present in the array.

2. Partition. Rearrange elements in such a way, that all elements
which are lesser than the pivot go to the left part of the array and
all elements greater than the pivot, go to the right part of the array.
Values equal to the pivot can stay in any part of the array. Notice,
that array may be divided in non-equal parts.

3. Sort both parts. Apply quicksort algorithm recursively to the left
and the right parts.

Partition algorithm in detail: There are two indices i and j and at the very
beginning of the partition algorithm i points to the first element in the array
and j points to the last one. Then algorithm moves i forward, until an element
with value greater or equal to the pivot is found. Index j is moved backward,
until an element with value lesser or equal to the pivot is found. If i ≤ j then
they are swapped and i steps to the next position (i + 1), j steps to the
previous one (j – 1) . Algorithm stops, when i becomes greater than j . After
partition, all values before i-th element are less or equal than the pivot and all
values after j-th element are greater or equal to the pivot.

Linked List
Q.1 Write an algorithm to search an element in a linear linked list?
Ans: Here START is a pointer variable which contains the address of first node.
ITEM is the value to be searched.

1. Set PTR = START, LOC = 1 [Initialize PTR and LOC]
2. Repeat While (PTR != NULL)
3. If (ITEM == PTR->INFO) Then [Check if ITEM matches with INFO

field]
4. Print: ITEM is present at location LOC
5. Return
6. Else
7. PTR = PTR->LINK [Move PTR to next node]
8. LOC = LOC + 1 [Increment LOC]
9. [End of If]
10. [End of While Loop]
11. Print: ITEM is not present in the list
12. Exit

Trees
Q.1 Explain binary search tree?
Ans: A tree is a finite set of one or more nodes such that:-There is a specially
designated node called the root. The remaining nodes are partitioned into
n>=0 disjoint sets T1, …, Tn, where each of these sets is a tree. We call T1, …,
Tn the subtrees of the root.
Binary Trees

1. A binary tree is a finite set of nodes that is either empty or consists
of a root and two disjoint binary trees called the left subtree and
the right subtree.

2. Any tree can be transformed into binary tree.by left child-right.
3. The left subtree and the right subtree are distinguished.

Some Extra Questions
Q.1 What is data structure?
Ans: A data structure is a way of organizing data that considers not only the
items stored, but also their relationship to each other. Advance knowledge
about the relationship between data items allows designing of efficient
algorithms for the manipulation of data.

Q.2 List out the areas in which data structures are applied extensively?
Ans: Compiler Design, Operating System, Database Management System,
Statistical analysis package, Numerical Analysis, Graphics, Artificial
Intelligence, Simulation

Q.3 What are the major data structures used in the following areas: RDBMS,
Network data model & Hierarchical data model.
Ans:

1. RDBMS – Array (i.e. Array of structures)
2. Network data model – Graph
3. Hierarchical data model – Trees

Q.4 If you are using C language to implement the heterogeneous linked list,
what pointer type will you use?
Ans: The heterogeneous linked list contains different data types in its nodes
and we need a link, pointer to connect them. It is not possible to use ordinary
pointers for this. So we go for void pointer. Void pointer is capable of storing
pointer to any type as it is a generic pointer type.

Q.5 Minimum number of queues needed to implement the priority queue?
Ans: Two. One queue is used for actual storing of data and another for storing
priorities.

Q.6 What is the data structures used to perform recursion?
Ans: Stack. Because of its LIFO (Last In First Out) property it remembers its
“caller” so knows whom to return when the function has to return. Recursion
makes use of system stack for storing the return addresses of the function
calls. Every recursive function has its equivalent iterative (non-recursive)
function. Even when such equivalent iterative procedures are written, explicit
stack is to be used.

Q.7 What are the methods available in storing sequential files?
Ans: Straight merging, Natural merging, Polyphase sort, Distribution of Initial
runs.

Q.8 List out few of the Application of tree data-structure?
Ans:

1. The manipulation of Arithmetic expression,
2. Symbol Table construction,
3. Syntax analysis.

Q.9 List out few of the applications that make use of Multilinked Structures?
Ans: Sparse matrix, Index generation.

Q.10 In tree construction which is the suitable efficient data structure?
(a) Array (b) Linked list (c) Stack (d) Queue (e) none
Ans: (b) Linked List

Q.11 What is the type of the algorithm used in solving the 8 Queens
problem?
Ans: Backtracking

Q.12 In an AVL tree, at what condition the balancing is to be done?
Ans: If the “pivotal value” (or the “Height factor”) is greater than 1 or less than
–1.

Q.13 What is the bucket size, when the overlapping and collision occur at
same time?
Ans: One. If there is only one entry possible in the bucket, when the collision
occurs, there is no way to accommodate the colliding value. This results in the
overlapping of values.

Q.14 There are 8, 15, 13, 14 nodes were there in 4 different trees. Which of
them could have formed a full binary tree?
Ans: 15.
In general: There are 2n -1 nodes in a full binary tree.
By the method of elimination: Full binary trees contain odd number of nodes.
So there cannot be full binary trees with 8 or 14 nodes, so rejected. With 13
nodes you can form a complete binary tree but not a full binary tree. So the
correct answer is 15.
Note Full and Complete binary trees are different. All full binary trees are
complete binary trees but not vice versa.

Q.15 Classify the Hashing Functions based on the various methods by which
the key value is found.
Ans:

 Direct method

 Subtraction method

 Modulo-Division method

 Digit-Extraction method

 Mid-Square method

 Folding method,

 Pseudo-random method

Q.16 What are the types of Collision Resolution Techniques and the methods
used in each of the type?
Ans:

1. Open addressing (closed hashing)
The methods used include: Overflow block,

2. Closed addressing (open hashing)
The methods used include: Linked list, Binary tree…

Q.17 In RDBMS, what is the efficient data structure used in the internal
storage representation?
Ans: B+ tree. Because in B+ tree, all the data is stored only in leaf nodes, that
makes searching easier. This corresponds to the records that shall be stored in
leaf nodes.

Q.18 Of the following tree structure, which is, efficient considering space and
time complexities?
(a) Incomplete Binary Tree
(b) Complete Binary Tree
(c) Full Binary Tree
Ans: (b) Complete Binary Tree.
By the method of elimination: Full binary tree loses its nature when
operations of insertions and deletions are done. For incomplete binary trees,
extra storage is required and overhead of NULL node checking takes place. So
complete binary tree is the better one since the property of complete binary
tree is maintained even after operations like additions and deletions are done
on it.

Q.19 What is a spanning Tree?
Ans: A spanning tree is a tree associated with a network. All the nodes of the
graph appear on the tree once. A minimum spanning tree is a spanning tree
organized so that the total edge weight between nodes is minimized.

Q.20 Does the minimum spanning tree of a graph give the shortest distance
between any 2 specified nodes?
Ans: No.Minimal spanning tree assures that the total weight of the tree is kept
at its minimum. But it doesn’t mean that the distance between any two nodes
involved in the minimum-spanning tree is minimum.

